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We prove, via a pathwise analysis, an existence result for stochastic differential equations
with singular coefficients that govern stochastic vortex systems. The techniques are self-
contained and rely on careful estimates on the displacements of particles, obtained by
recursively identifying “vortex clusters” whose mutual interactions can be controlled.
This provides a non trivial extension of techniques of Marchioro and Pulvirenti (7) for
deterministic motion of vortices.
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1. INTRODUCTION

Vorticity has played a fundamental role in the understanding of incompressible
fluids, and in numerical approximation methods for the two dimensional Euler
or Navier-Stokes equation via the so-called vortex methods. In this work, we are
interested in pathwise properties of stochastic differential equations with singular
coefficients governing the so-called vortex systems. Consider the so-called Biot-
Savart kernel in R

2,

K (x) = 1

2π

(−x2, x1)

|x |2 , x = (x1, x2) ∈ R
2\{0}

and the system of stochastic differential equations:

Xi
t = Xi

0 +
√

2νBi
t +

∫ t

0

∑
j �=i

K
(
Xi

s − X j
s

)
a j ds, i = 1, . . . , N . (1)
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Here, Xi
0 and ai are (possibly random) quantities taking values respec-

tively in R
2 and R, B1, . . . , B N are (independent) 2-dimensional Brownian

motions independent of the formers, and ν ≥ 0 is the (constant) viscosity
coefficient.

Existence of solutions of system (1) is not obvious because of the singular
coefficients. In the case where ν > 0 and the “vortex intensities” ai have all the
same sign, it has been proved by Takanobu(14) through a purely probabilistic
argument. A proof of existence for general intensities ai was given by Osada, (12)

based on analytic results for generators in generalized divergence form obtained
in Osada, (11) and on potential theoretical results.

In the present work, we shall prove an existence result for Eq. (1) through a
different, self-contained approach, that exploits from the trajectorial point of view
some characteristics of the system and covers a more general situation that the one
considered in Ref. 14. We shall prove the following:

Theorem 1.1. Consider independent standard 2-dimensional Brownian motions
B1, . . . , B N in a filtered probability space (�,F , (F)t , P), and independent F0-
measurable random variables (Xi

0) having a density with respect to Lebesgue
measure in R

2. Assume moreover that the (possibly random) intensities (ai )
satisfy

(H) for all I ⊆ {1, . . . , N },
∑
i∈I

ai �= 0. (a.s.)

Then, there is pathwise existence and uniqueness on [0,∞[ for the systems of
stochastic differential Eq. (1).

Hypothesis (H) is used in Marchioro and Pulvirenti, (7) Chapter 4, to prove ex-
istence of solutions of deterministic vortex systems (ν = 0). Their techniques
are based on controlling the displacements of particles in each subsystem, say
(Xi )i∈I with I ⊂ {1, . . . N }, which is “far away enough” from all other parti-
cles, in terms of the displacements of smaller subsystems J ⊂ I . This is possible
thanks to the decay of the interaction kernel, but requires a careful control of the
influences of the particles not belonging to subsystem I . The analysis is done
through a clever recurrence argument that allows to identify different “clusters” of
particles occurring at determined distances from each other and for an adequate
time lapse, which provides some control of their mutual interaction (for some
time intervals). A global control of displacements allows them to prove finiteness
of some logarithmic potential along trajectories and deduce a priori absence of
collisions.
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Rather than the statement of Theorem 1.1 itself, our main goal here is to
explicitly develop a similar “clustering” argument in the stochastic setting. The
identification of the moments when clusters occur requires the knowledge of
the past and future displacements of some of the particles. In our case, those
displacements are related in a complex way to those of the driving Brownian
motions. Many of the arguments used in Ref. 7 in order to define the clusters
are rather heuristic or do not provide explicit estimates that could be generalized.
We therefore need a considerably more subtle analysis, in order to adapt the
general ideas therein and obtain tractable (semi-explicit) estimates in terms of the
Brownian motions displacements. These will be fundamental for proving finiteness
of the expectation of some functional of the particles trajectories.

We recall that in the mean field case (i.e. when a j is proportional to ± 1
N ),

if ν = 0 and K is replaced by some regular approximating kernel KεN , it is
known that system (1) converges (when N goes to infinity and εN to 0) to so-
lutions of the 2d-Euler equation (see Marchioro and Pulvirenti (7) or Bertozzi
and Majda(1)). Similarly, when ν > 0, convergence of mollified vortex systems
has been proved, towards solutions of the incompressible 2d-Navier-Stokes equa-
tions (see e.g. Marchioro and Pulvirenti, (8) Méléard (1,9)). A convergence result
for the true (non-mollified) particle system (1) has been obtained when ν > 0 is
large enough by Osada(10), relying on the results of Refs. 11, 12. However, the
probabilistic understanding of that convergence and of the pathwise properties of
the system is not satisfactory. It is also worth mentioning that several stochas-
tic particle systems in mean field interaction of singular type, arise in physically
relevant models, and also related to spectral measure processes of certain matrix
diffusions and generalizations (see for the latter e.g. Rogers and Shi (13), Cépa
and Lépingle (2)). Similarly, mean field particle systems with singular interactions
can be associated with three dimensional incompressible fluids (see Bertozzi and
Majda(1) for the convergence of mollified deterministic particle systems towards
the 3d-Euler equation, and Fontbona(4) for stochastic particle approximations of
the 3d- Navier-Stokes equations).

We expect that the techniques we present here hopefully provide further
insight on the pathwise behavior of the vortex system and related stochastic
singular interacting particle systems. Unfortunately, by the moment our techniques
do not provide well behaved estimates in terms of N , and our main result excludes
the relevant mean field case. Nevertheless, the ideas developed here should allow
for refinements in several directions.

This work is presented as follows. In Sec. 2 we develop the “clustering”
argument to obtain on mollified vortex systems some uniform (in the mollifying
parameter and the initial condition) displacements estimates. In Sec. 3 we use
those results to prove Theorem 1.1. In Sec. 4 we discuss the role of assumption
(H) and limitations of the method.
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2. UNIFORM MOMENTS ESTIMATES FOR MOLLIFIED VORTEX

SYSTEMS

We first consider vortex systems with regularized interaction kernels, and
prove moments estimates which are uniform in the regularizing parameter.

Recall that K is defined as K (x) = ∇⊥G(x), where G(x) = − 1
2π

log |x | and
∇⊥ = ( ∂

∂x2
,− ∂

∂x1
).

Let logε be a smooth function such that logε(r ) = log(r ) if r ≥ ε, and more-
over such that | d

dr logε(r )| ≤ 1
r . We define the mollified kernels Kε: R

2 → R
2 by

Kε(x) = ∇⊥Gε(x), where Gε(x) = − 1
2π

logε |x |. Then, Kε is an odd function
(Kε(x) = −Kε(−x)) and for all x ∈ R

2, we have

Kε(x) ≤ 1

2π |x | .

Let 0 < s ≤ t and x ∈ R
2. We denote by ξε

s,t (x) := (ξ i,ε
s,t (x, ω))N

i=1 the unique
strong solution of the system of stochastic differential equations in (R2)N

ξε,i
s,t (x) = xi +

√
2ν

(
Bi

t − Bi
s

) +
∫ t

s

∑
j �=i

Kε

(
ξε,i

s,r (x) − ξε, j
s,r (x)

)
a j dr (2)

for t ≥ s, i = 1, . . . , N . We recall that the regularity properties of Kε and standard
results on stochastic flows (cf. Kunita (6)) imply existence of a continuous version of
the three parameter processes (s, t, x) → ξε

s,t (x), which is moreover continuously
differentiable in x for all s ≤ t .

We shall implicity work in a subset �0 ⊂ � of full measure where those
properties about ξε

s,t (x) are everywhere true.
We also fix for the sequel a finite non empty time interval [0, T ].
Let us introduce some notation. We write

A := min
I⊆{1,...,N }

∣∣∣∑
i∈I

ai

∣∣∣,
which is a strictly positive quantity by assumption (H), and

a := max{1, |a1|, . . . , |aN |}.
For each i ∈ {1, . . . , N }, we also define the random variables

Si
T := sup

t∈[0,T ]

∣∣Bi
t

∣∣ and Di
T := 2

√
2νSi

T + aT .

Finally, for s ≤ t we denote by

M I
s,t (x) :=

∑
i∈I

aiξ
ε,i
s,t (x)

the bari-center of the subsystem (ξ i,ε
s,t (x, ω))i∈I , and so M I

s,s(x) = ∑
i∈I ai x i .
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The following is the first step of a recursive argument:

Lemma 2.1. Let i ∈ {1, . . . , N } and θ1, ρ1 ∈ [0, T ] with θ1 ≤ ρ1, and write



{i}
θ1,ρ1

:=
{

(x, ω) ∈ (R2)N × �0:
∑
j �=i

1

2π

∣∣ξε,i
θ1,s

(x, ω) − ξ
ε, j
θ1,s

(x, ω)
∣∣−1

< 1∀s ∈ [θ1, ρ1[}
}

.

Then, the following inclusion holds:



{i}
θ1,ρ1

⊆ {
(x, ω):

∣∣ξε,i
θ1,t

(x, ω) − xi
∣∣ ≤Di

T (ω) ∀s ∈ [θ1, ρ1]
}
.

Proof: On the first set one has for t ∈ [θ1, ρ1] that∣∣ξε,i
θ1,t

(x, ω) − xi
∣∣ ≤

√
2ν

∣∣Bi
t (ω) − Bi

θ1
(ω)

∣∣ + a(t − θ1).

�

Before stating and proving the recurrence step, and in order to give its idea in a
simpler setting, we next prove explicitly the “n = 2 step”:

Lemma 2.2. Let I = {i1, i2} ⊆ {1, . . . N } and θ2, ρ2 ∈ [0, T ] with θ2 ≤ ρ2, and
write


 I
θ2,ρ2

:=
{

(x, ω) ∈ (R2)N × �0 :
∑
j �∈I

1

2π

∣∣ξε,i
θ2,s

(x, ω) − ξ
ε, j
θ2,s

(x, ω))
∣∣−1

< 1 − 1

N
∀ i ∈ I,∀s ∈ [θ2, ρ2[

}

Then, we have the inclusion


 I
θ2,ρ2

⊆
{

(x, ω):
∣∣ξε,i

θ2,t
(x, ω) − xi

∣∣

≤ a

A

(
(A + 3)

(
Di1

T + Di2
T

) + N

π

)
∀ i ∈ I,∀s ∈ [θ2, ρ2]

}
.

Proof: We fix (x, ω) ∈ 
 I
θ2,ρ2

. For notational simplicity we omit reference to ω

in the flow ξε(x). The function Kε(x) being odd, we have for θ2 ≤ t that

M I
θ2,t (x) − M I

θ2,θ2
(x) =

√
2ν

(
ai1

(
Bi1

t − Bi1
θ2

) + ai2

(
Bi2

t − Bi2
θ2

))
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+
∫ t

θ2

∑
j �=i1,i2

(
Kε

(
ξ

ε,i1
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
)
aii

+ Kε

(
ξ

ε,i2
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
)
ai2

)
a j ds.

Therefore, for θ2 ≤ t ≤ ρ2

∣∣M I
θ2,t (x) − M I

θ2,θ2
(x)

∣∣ ≤ a
√

2ν
(∣∣Bi1

t − Bi1
θ2

∣∣ + ∣∣Bi2
t − Bi2

θ2

∣∣) + 2a2T

(
1 − 1

N

)

≤ 2a
√

2ν
(
Si1

T + Si2
T

) + 2a2T

= aDi1
T + aDi2

T .

Since

M I
θ2,t (x) − M I

θ2,θ2
(x)

= (
ai1 + ai2

)(
ξ

ε,i1
θ2,t

(x) − xi1
) + ai2

((
ξ

ε,i2
θ2,t

(x) − xi2
) − (

ξ
ε,i1
θ2,t

(x) − xi1
))

,

we deduce that for θ2 ≤ t ≤ ρ2,

A
∣∣ξε,i1

θ2,t
(x) − xε,i1

∣∣ ≤ a
(
Di1

T + Di2
T + ∣∣ξε,i1

θ2,t
(x) − ξ

ε,i2
θ2,t

(x)
∣∣ + ∣∣xi2 − xi1

∣∣). (3)

Consider the time instant

σ := inf

{
t > θ2: A

∣∣ξε,i1
θ2,t

(x) − xi1
∣∣ > a

(
3
(
Di1

T + Di2
T

) + N

π

)}
.

From continuity of t �→ ξ
ε,i1
θ2,t

(x) and the fact that ξ
ε,i1
θ2,t

(x) → xi1 when t → θ2, we
clearly have θ2 < σ ≤ ∞. Furthermore, for all t ∈ [θ2, σ ∧ ρ2], we have

∣∣ξε,i1
θ2,t

(x) − xi1
∣∣ ≤ a

A

(
3
(
Di1

T + Di2
T

) + N

π

)
. (4)

We consider now two cases:

Case (a) σ ≥ ρ2: In this case, the upper bound (4) holds on [θ2, ρ2], and the
asserted inclusion is proved.

Case (b) σ < ρ2: Since

A
∣∣ξε,i1

θ2,σ
(x) − xi1

∣∣ = a

(
3
(
Di1

T + Di2
T

) + N

π

)
, (5)

we obtain from (3) that

|xi1 − xi2 | + ∣∣ξε,i1
θ2,σ

(x) − ξ
ε,i2
θ2,σ

(x)
∣∣ ≥ 2a

(
Di1

T + Di2
T

) + N

π
.
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Consequently, there is τ ∈ {θ2, σ } such that

∣∣ξε,i1
θ2,τ

(x) − ξ
ε,i2
θ2,τ

(x)
∣∣ ≥ a

(
Di1

T + Di2
T

) + N

2π

>
N

2π
. (6)

From this and the definition of 
 I
θ2,ρ2

we get that

∑
j �=i1

1

2π

∣∣ξε,i1
θ2,τ

(x) − ξ
ε, j
θ2,τ

(x)
∣∣−1

< 1,

and
∑
j �=i2

1

2π

∣∣ξε,i2
θ2,τ

(x) − ξ
ε, j
θ2,τ

(x)
∣∣−1

< 1.

We claim that furthermore, for all s ∈ [τ, ρ2],

∑
j �=i1

1

2π

∣∣ξε,i1
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
∣∣−1

< 1 (7)

and
∑
j �=i2

1

2π

∣∣ξε,i2
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
∣∣−1

< 1. (8)

For suppose there exists s ∈ [τ, ρ2] for which (7) or (8) do not hold. Then, if we
set

s∗ := inf

{
s ≥ τ : ∃p ∈ {1, 2} s.t.

∑
j �=i p

1

2π

∣∣ξε,i p

θ2,s
(x) − ξ

ε, j
θ2,s

(x)
∣∣−1 ≥ 1

}
,

by continuity we would have

τ ≤ s∗ ≤ ρ2,

and
∑
j �=i p

1

2π

∣∣ξε,i p

θ2,s∗ (x) − ξ
ε, j
θ2,s∗ (x)

∣∣−1 = 1

for p ∈ {1, 2} realizing s∗. Note that we must have τ �= s∗. But from the definition
of 
 I

θ2,ρ2
, the previous equality implies that

1

2π

∣∣ξε,i1
θ2,s∗ (x) − ξ

ε,i2
θ2,s∗ (x)

∣∣−1
>

1

N
. (9)
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On the other hand, for all s ∈ [τ, s∗[ we have from definition of s∗ that∑
j �=i1

1

2π

∣∣ξε,i1
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
∣∣−1

< 1

or, equivalently, ∑
j �=i1

1

2π

∣∣ξε,i1
τ,s (ξθ2,τ (x)) − ξε, j

τ,s (ξθ2,τ (x))
∣∣−1

< 1.

Thus, we have (ξθ2,τ (x), ω) ∈ 

{i1}
τ,s∗ and Lemma 2.1 then implies that∣∣ξε,i1

τ,s

(
ξθ2,τ (x)

) − ξ
ε,i1
θ2,τ

(x)
∣∣ = ∣∣ξε,i1

θ2,s
(x) − ξ

ε,i1
θ2,τ

(x)
∣∣ ≤ aDi1

T (10)

for all s ∈ [τ, s∗]. For s ∈ [τ, s∗[ we also have∑
j �=i2

1

2π

∣∣ξε,i2
θ2,s

(x) − ξ
ε, j
θ2,s

(x)
∣∣−1

< 1,

so by an analogous argument we deduce that for all s ∈ [τ, s∗],∣∣ξε,i2
τ,s (ξθ2,τ (x)) − ξ

ε,i2
θ2,τ

(x)
∣∣ = ∣∣ξε,i2

θ2,s
(x) − ξ

ε,i2
θ2,τ

(x)
∣∣ ≤ aDi2

T . (11)

From inequalities (10) and (11) with s = s∗ and (6) it follows that∣∣ξε,i1
θ2,s∗ (x) − ξ

ε,i2
θ2,s∗ (x)

∣∣
≥ ∣∣ξε,i1

θ2,τ
(x) − ξ

ε,i2
θ2,τ

(x)
∣∣ − ∣∣ξε,i1

θ2,τ
(x) − ξ

ε,i1
θ2,s∗ (x)

∣∣ − ∣∣ξε,i2
θ2,τ

(x) − ξ
ε,i2
θ2,s∗ (x)

∣∣ ≥ N

2π
.

This contradicts (9), and therefore, (7) and (8) must hold for all s ∈ [τ, ρ2] as
claimed.

Now, observe that (7) together with (8) mean that (ξθ2,τ (x), ω) is an element
of 
{i1}

τ,ρ2
. A new application of Lemma 2.1 shows that for all t ∈ [τ, ρ2]

∣∣ξε,i1
τ,t (ξθ2,τ (x)) − ξ

ε,i1
θ2,τ

(x)
∣∣ = ∣∣ξε,i1

θ2,t
(x) − ξ

ε,i1
θ2,τ

(x)
∣∣ ≤ aDi1

T .

If τ = θ2, this implies the required upper bound on [θ2, ρ2].
If in turn we have τ = σ , we deduce from the previous inequality and from

(4) that for all t ∈ [τ, ρ2]∣∣ξε,i1
θ2,t

(x) − xi1
∣∣ ≤ ∣∣ξε,i1

θ2,t
(x) − ξ

ε,i1
θ2,σ

(x)
∣∣ + ∣∣ξε,i1

θ2,σ
(x) − xi1

∣∣

≤ a

(
Di1

T + 3

A

(
Di1

T + Di2
T

) + N

Aπ

)
, (12)

and, also because of (4), inequality (12) holds then for all t ∈ [θ2, ρ2].
This achieves the proof in Case (b).
Bringing together Case (a) and b), we conclude that for all t ∈ [θ2, ρ2]

∣∣ξε,i1
θ2,t

(x) − xi1
∣∣ ≤ a

A

(
(A + 3)

(
Di1

T + Di2
T

) + N

π

)
.
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Interchanging the roles of i1 and i2 provides the desired upper bound
for i2. �

We introduce next some notation. For each I ⊂ {1, . . . , N } we define

FT (I ) := 0 if I = ∅,

FT (I ) := aDi
T if I = {i}

and, for all I such that n := |I | ≥ 2,

FT (I ) := a

A

( ∑
k∈I

Dk
T +

(
2n(n − 1) + A

a

)
max
(J1,J2)

{FT (J1) + FT (J2)}

+ Nn(n − 1)2

π

)
,

where the maximum is taken over all non-trivial partitions {J1, J2} of I into two
subsets. The random variable FT (I ) depends only on N , n = |I |, T and on the
random variables supt∈[0,T ] |Bi

t |, for i ∈ I . Observe moreover that FT (I ) has finite
moments of all orders for all I .

The following elementary fact will be useful:

Remark 2.1. Let J ⊂ R
2 be a finite set of n ≥ 2 elements. Suppose there are

y, z ∈ J and d > 0 such that |y − z| ≥ d. Then, there is a non-trivial partition
{J1, J2} of J such that

min
(y1,y2)∈Ji ×J2

|y1 − y2| ≥ d

n

We can now state and prove main result of this section, which is a generalization
of the previous lemma:

Proposition 2.1. Let I = {i1, . . . , in} ⊆ {1, · · · N }, θn, ρn ∈ [0, T ] with θn ≤ ρn

and write


 I
θn ,ρn

:=
{

(x, ω):
∑
j �∈I

1

2π

∣∣ξε,i
θn ,s

(x, ω) − ξ
ε, j
θn ,s

(x, ω)
∣∣−1

< 1 − (n − 1)

N
∀i ∈ I, ∀s ∈ [θn, ρn[

}
.

Then,


 I
θn ,ρn

⊆ {
(x, ω):

∣∣ξε,i
θn ,t

(x, ω) − xi
∣∣ ≤ FT (I )∀i ∈ I,∀t ∈ [θn, ρn]

}
.
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Proof: The proof is by induction in n = |I | ∈ {1, . . . , N }. From previous
lemmas, we know that the statement is true for n = 1 and n = 2. Consider
n ∈ {3, . . . N } and suppose the assertion is true for all m ≤ n − 1. We will prove
it also holds for m = n.

Let (x, ω) ∈ 
 I
θn ,ρn

, then we have for t ≥ θn that

M I
θn ,t (x) − M I

θn ,θn
(x)

=
√

2ν
∑
k∈I

ak

(
Bk

t − Bk
θn

) +
∫ t

θn

∑
k∈I

∑
j �∈I

(
Kε

(
ξ

ε,k
θn ,s

(x) − ξ
ε, j
θn ,s

(x)
))

a j ds.

(we omit again ω when writing ξε). Therefore, for θn ≤ t ≤ ρn

∣∣M I
θn ,t (x) − M I

θn ,θn
(x)

∣∣ ≤ 2a
√

2ν
∑
k∈I

Sk
T + naT

(
1 − (n − 1)

N

)

≤ a
∑
k∈I

Dk
T .

Let us fix i ∈ I . We have

M I
θn ,t (x) − M I

θn ,θn
(x) =

∑
k∈I

ak

(
ξ

ε,i
θn ,t

(x) − xi
)

+
∑

k∈I\{i}
ak

((
ξ

ε,k
θn ,t

(x) − xk
) − (

ξ
ε,i
θn ,t

(x) − xi
))

from where, for all θn ≤ t ≤ ρn ,

A
∣∣ξε,i

θn ,t
(x) − xi

∣∣ ≤ a

(∑
k∈I

Dk
T +

∑
k∈I\{i}

(∣∣ξε,i
θn ,t

(x) − ξ
ε,k
θn ,t

(x)
∣∣ + |xi − xk |)

)
. (13)

Define

ET (I ) := max{FT (J1) + FT (J2)}
where the maximum is taken over all non trivial partitions {J1, J2} of I . Consider
the time instant

σ := inf

{
t > θn: A

∣∣ξε,i
θn ,t

(x) − xi
∣∣

> a

( ∑
k∈I

Dk
T + 2n(n − 1)ET (I ) + Nn(n − 1)2

π

)}
.
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Clearly, we have θn < σ ≤ ∞ and for all t ∈ [θn, σ ∧ ρn],

∣∣ξε,i
θn ,t

(x) − xi
∣∣ ≤ a

A

(∑
k∈I

Dk
T + 2n(n − 1)ET (I ) + Nn(n − 1)2

π

)
. (14)

Case (a) σ ≥ ρn: The upper bound (14) then holds on [θn, ρn].

Case (b) σ < ρn: We have

A
∣∣ξε,i

θn ,σ
(x) − xi

∣∣ = a

(∑
k∈I

Dk
T + 2n(n − 1)ET (I ) + Nn(n − 1)2

π

)
,

and we obtain from (13)

∑
k∈I\{i}

(∣∣ξε,i
θn ,σ

(x) − ξ
ε,k
θn ,σ

(x)
∣∣ + |xi − xk |) ≥ 2n(n − 1)ET (I ) + Nn(n − 1)2

π

Thus, there exists k0 ∈ I\{i} such that

∣∣ξε,i
θn ,σ

(x) − ξ
k0
θn ,σ

(x)
∣∣ + |xi − xk0 | ≥ 2nET (I ) + Nn(n − 1)

π

and we deduce the existence of some τ ∈ {θn, σ } such that

∣∣ξε,i
θn ,τ

(x) − ξ
k0
θn ,τ

(x)
∣∣ ≥ nET (I ) + Nn(n − 1)

2π
.

By Remark 2.1 we have a non trivial partition {I1, I2} of I , with i ∈ I1 and k0 ∈ I2

such that

min
k1∈I1,k2∈I2

∣∣ξε,k1
θn ,τ

(x) − ξ
ε,k2
θn ,τ

(x)
∣∣ ≥ N (n − 1)

2π
+ ET (I )

>
N (n − 1)

2π
(15)

Consequently, we have for each k1 ∈ I1

∑
k2∈I2

1

2π

∣∣ξε,k1
θn ,τ

(x) − ξ
ε,k2
θn ,τ

(x)
∣∣−1

<
1

N

and, for each k2 ∈ I2,
∑
k1∈I1

1

2π

∣∣ξε,k1
θn ,τ

(x) − ξ
ε,k2
θn ,τ

(x)
∣∣−1

<
1

N
.

Therefore, since (x, ω) ∈ 
 I
θn ,ρn

, for each k1 ∈ I1 we have that

∑
j �∈I1

1

2π

∣∣ξε,k1
θn ,τ

(x) − ξ
ε, j
θn ,τ

(x)
∣∣−1

< 1 − (n − 1) − 1

N
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and for each k2 ∈ I2,
∑
j �∈I2

1

2π

∣∣ξε,k2
θn ,τ

− ξ
ε, j
θn ,τ

∣∣−1
< 1 − (n − 1) − 1

N

Let us check as in the previous lemma that for all s ∈ [τ, ρn] and k1 ∈ I1 and
k2 ∈ I2,

∑
j �∈I1

1

2π

∣∣ξε,k1
θn ,s

− ξ
ε, j
θn ,s

∣∣−1
< 1 − (n − 1) − 1

N
, (16)

and
∑
j �∈I2

1

2π

∣∣ξε,k2
θn ,s

− ξ
ε, j
θn ,s

∣∣−1
< 1 − (n − 1) − 1

N
. (17)

Suppose there exists s ∈ [τ, ρn] for which (16) or (17) do not hold. Then, setting

s∗ : = inf

{
s ≥ τ : ∃p ∈ {1, 2}, k ∈ Ip s.t.

∑
j �∈Ip

1

2π

∣∣ξε,k
θn ,s

(x) − ξ
ε, j
θn ,s

(x)
∣∣−1

≥ 1 − (n − 1) − 1

N

}

we have

τ ≤ s∗ ≤ ρn,

and, for some p ∈ {1, 2} and k ∈ Ip realizing s∗,

∑
j �∈Ip

1

2π

∣∣ξε,k
θ2,s∗ (x) − ξ

ε, j
θ2,s∗ (x)

∣∣−1 = 1 − (n − 1) − 1

N
.

Notice that then, we must have τ �= s∗. The definition of 
 I
θn ,ρn

and the previous
equality imply that for q ∈ {1, 2}\{p},

∑
j �∈Iq

1

2π

∣∣ξε,k
θ2,s∗ (x) − ξ

ε, j
θ2,s∗ (x)

∣∣−1
>

1

N
. (18)

Now, for all s ∈ [τ, s∗[, we have (from definition of s∗) that
∑
j �∈I1

1

2π

∣∣ξε,k1
τ,s

(
ξθn ,τ (x)

) − ξε, j
τ,s (ξθn ,τ (x)

)∣∣−1
< 1 − (n − 1) − 1

N

and
∑
j �∈I2

1

2π

∣∣ξε,k2
τ,s

(
ξθn ,τ (x)

) − ξε, j
τ,s

(
ξθn ,τ (x)

)∣∣−1
< 1 − (n − 1) − 1

N
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for all k1 ∈ I1 and k2 ∈ I2. By induction hypothesis, this implies that for all
s ∈ [τ, s∗],∣∣ξε,k1

τ,s

(
ξθn ,τ (x)

) − ξ
ε,k1
θn ,τ

(x)
∣∣ = ∣∣ξε,k1

θn ,s
(x) − ξ

ε,k1
θn ,τ

(x)
∣∣ ≤ FT (I1)

for all k1 ∈ I1 and∣∣ξε,k2
τ,s

(
ξθn ,τ (x)

) − ξ
ε,k2
θn ,τ

(x)
∣∣ = ∣∣ξε,k2

θn ,s
(x) − ξ

ε,k2
θn ,τ

(x)
∣∣ ≤ FT (I2)

for all k2 ∈ I2. But then, for s = s∗, k ∈ Ip, Iq ⊆ I fixed as before, and any j ∈ Iq ,
we get ∣∣ξε,k

θn ,s∗ (x)) − ξ
ε, j
θn ,s∗ (x)

∣∣ ≥ ∣∣ξε,k
θn ,τ

(x) − ξ
ε, j
θn ,τ

(x)
∣∣ − ∣∣ξε,k

θn ,τ
(x) − ξ

ε,k
θn ,s∗ (x)

∣∣
−∣∣ξε, j

θn ,τ
(x) − ξ

ε, j
θn ,s∗ (x)

∣∣
≥ ∣∣ξε,k

θn ,τ
(x)) − ξ

ε, j
θn ,τ

(x)
∣∣ − FT (I1) − FT (I2)

≥ ∣∣ξε,k
θn ,τ

(x)) − ξ
ε, j
θn ,τ

(x)
∣∣ − ET (I )

from where we obtain, using also (15),

∑
j �∈Ip

1

2π

∣∣ξε,k
θ2,s∗ (x) − ξ

ε, j
θ2,s∗ (x)

∣∣−1 ≤ 1

N
,

contradicting (18).
Therefore, (16) and (17) must hold for all s ∈ [τ, ρn].
Next, from (16) with k1 = i , together with the induction hypothesis applied

to θn−1 = τ and ρn−1 = ρn , we get that∣∣ξε,i
τ,t (ξθn ,τ (x)) − ξ

ε,i
θn ,τ

(x)
∣∣ = ∣∣ξε,i

θn ,t
(x) − ξ

ε,i
θn ,τ

(x)
∣∣ ≤ FT (I1)

for all t ∈ [τ, ρn].
In case τ = θn , this implies the required upper bound in [θn, ρn].
If τ = σ , we use the previous upper bound and (14) to get that∣∣ξε,i1
θn ,t

(x) − xi1
∣∣ ≤ ∣∣ξε,i1

θn ,t
(x) − ξ

ε,i1
θn ,σ

(x)
∣∣ + ∣∣ξε,i1

θn ,σ
(x) − xi1

∣∣

≤ ET (I ) + a

A

(∑
k∈I

Dk
T + 2n(n − 1)ET (I ) + Nn(n − 1)2

π

)

for all t ∈ [θn, ρn]. This finishes the proof in Case (b), and the conclusion
follows. �

Corollary 2.1. For all i ∈ {1, . . . , N } and T > 0, it almost surely holds that

sup
0≤s≤t≤T

sup
ε>0

sup
x∈(R2)N

∣∣ξε,i
s,t (x, ω) − xi

∣∣ ≤ FT ({1, . . . , N })(ω) < ∞.
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In particular, we have

sup
ε>0

sup
x∈(R2)N

∣∣ξε,i
0,t (x, ω) − xi

∣∣ ≤ Ft ({1, . . . , N })(ω).

Proof: We only have to prove the first statement. This is indeed straightfor-
ward, since we can choose in Proposition 2.1 θN = s, ρN = t , and notice that the
inequality in the definition of 


{1,...,N }
s,t is simply 0 < 1

N . �

3. PATHWISE EXISTENCE AND UNIQUENESS FOR SOME VORTEX

SYSTEMS

The proof of Theorem 1.1 will combine ideas of Ref. 7 with others of Rogers
and Shi (13) used to show the absence of collision for a system diffusing particles
interacting on the real line through a logarithmic potential. The argument relies on
obtaining some uniform control on the expectation of the potential for the particles
stopped at a sequence of times of “collisions up to distance ε”. This allows to
prove a priori absence of collisions. (The latter indeed is a generalization of an
argument for Bessel processes, see e.g. Ref. 5). A different argument, but with a
similar underlying idea, is the one given by Ref. 14 for proving existence of the
stochastic vortex system under the assumption that all intensities ai have the same
sign.

We remark that in the cases of Refs. 13, 14, the authors rely on the positivity of
some quantities arising when evaluating the logarithmic potential at a positive time
instant. A supermartingale type argument allows then to control the (expectation
of the) potential. In the present case, that control will be consequence of the
moments estimates and of the fact that the stochastic flow (2) preserves volume,
an argument used in Ref. 7 in the deterministic setting.

More precisely, in the way Kε was defined, it is clear that div Kε = 0. Then,
the drift term of the stochastic flow (2) in (R2)N has null divergence too. The next
result can then be proved in a similar way as the classic (deterministic) Liouville
theorem (see e.g. Ref. 3).

Lemma 3.1. Let Jξt denote the Jacobian matrix of ξt (x). Then det(Jξt ) = 1.

In the sequel, we write BR for the centered ball of radius R in R
2N . The following

lemma will be used in the proof of Theorem 1.1 and is easily checked:

Lemma 3.2. There exists a positive constant C1 such that∫
BR

dx

|xi − x j ||xi − xk | ≤ C1 R(2N−2)
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Proof of Theorem 1.1: For each ε > 0, consider the stochastic flow (2) con-
structed on the probability space (�,F , (Ft ), P) and write

ξε
t (x, ω) := ξε

0,t (x, ω).

Let (Xi
0), i = 1 . . . N be i.i.d R

2-valued random variables in the same probability
space of law p0(y) dy. Denote by X ε

t = (X ε,i
t )N

i=1 the unique path-wise solution of

X ε,i
t = Xi

0 +
√

2νBi
t +

∫ t

0

∑
j �=i

Kε

(
X ε,i

s − X ε, j
s

)
a j ds, i = 1, . . . , N ,

so X ε,i
t = ξ

ε,i
t (X0) P-a.s., where X0 = (X1

0, . . . , X N
0 ). We consider the (Ft )-

stopping time

Tε := inf
{
t > 0: ∃i �= j s.t.

∣∣X ε,i
t − X ε, j

t

∣∣ ≤ ε
}
,

and notice that for ε′ ≤ ε, it holds that

X ε,i
t = Xi,ε′

t for all t ≤ Tε P − a.s.

since Kε(x) = Kε′ (x) for all |x | ≤ ε′ and Kε′ is Lipschitz and bounded.
By the latter and by continuity, Tε increases P-a.s. as ε → 0. Our goal is to

prove that for each t > 0,

lim
ε→0

Tε > t, P − a.s. (19)

We want to take advantage of the volume-preserving property of the flow, but
since we are working in the whole space R

2N , Lebesgue measure does not have a
natural probabilistic sense. We therefore enlarge the probability space as follows:
denote by Bη

R the subset of BR .

Bη

R = {x = (x1, . . . , x N ) ∈ R
2N : |x | ≤ R and min

i, j
|xi − x j | > η},

and let �
η

R be the normalized Lebesgue measure on Bη

R .
For each R > 0 let the space �̃R := BR × � be endowed with the natural

completed product sigma-field, with respect to the product measure

Pη

R = �
η

R ⊗ P.

We write Eη

R for the associated expectation, and GR
t stands for the smallest sigma-

field containing Ft ∨ βR and such that the filtration (GR
t ) satisfies the usual condi-

tions.
Next, denote by (Y i

0)N
i=1 the random variables defined on �̃

η

R by Y i
0(y, ω) = y.

The vector (Y i
0)N

i=1 has thus the law �
η

R and is independent of the Brownian motions
B1, . . . , B N .

For each ε, consider now on �̃ε
R the process

Y i,ε
t (y, ω) := ξ i,ε

t (y, ω),
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(which is a Pη
R- semi-martingale with respect to (GR

t )), and the (GR
t )-stopping time

τε := inf
{
t > 0 : ∃i �= j s.t.

∣∣Y ε,i
t − Y ε, j

t

∣∣ ≤ ε
}
.

We will prove that

lim
ε→0

τε > t, P − a.s. (20)

To that end, we consider the singular “potential” �(x) = log(|x |2). We shall es-
tablish the existence of a finite constant C(R, η, t, N ) > 0, such that

sup
0<ε≤η

∣∣∣∣∣E
η

R

(
N∑

i=1

∑
j �=i

�
(
Y ε,i

t∧τε
− Y ε, j

t∧τε

))∣∣∣∣∣ < C(R, η, t, N ). (21)

Let �ε(x) be a smooth function s.t. �ε(x) = ln(|x |2) = �(x) for |x | ≥ ε. By Itô’s
formula, we have for all η ≥ ε > 0 and t > 0 that

�ε

(
Y ε,i

t − Y ε, j
t

) = �ε

(
Y ε,i

0 − Y ε, j
0

) +
∫ t

0
∇�ε

(
Y ε,i

s − Y ε, j
s

)
.

×
{ ∑

k �=i

ak Kε

(
Y ε,i

s − Y ε,k
s

) −
∑
k �= j

ak Kε

(
Y ε, j

s − Y ε,k
s

)}
ds

+
√

2ν

∫ t

0
∇�ε

(
Y ε,i

s − Y ε, j
s

) · d
(
Bi

s − B j
s

)

+ 2ν

∫ t

0
��ε

(
Y ε,i

s − Y ε, j
s

)
ds.

Since �ε(x) = ln(|x |2) = �(x) for |x | ≥ ε, the last term vanishes if t ≤ τε. On the
other hand, ∇�ε(x) and Kε(x) are orthogonal for all x , so we obtain that Pη

R-a.s.,

�
(
Y ε,i

t∧τε
− Y ε, j

t∧τε

) = �
(
Y ε,i

0 − Y ε, j
0

) +
∫ t∧τε

0
∇�

(
Y ε,i

s − Y ε, j
s

)
.

×
{ ∑

k �=i, j

ak Kε

(
Y ε,i

s − Y ε,k
s

) −
∑
k �=i, j

ak Kε

(
Y ε, j

s − Y ε,k
s

)}
ds

+
√

2ν

∫ t∧τε

0
∇�ε

(
Y ε,i

s − Y ε, j
s

) · d
(
Bi

s − B j
s

)
.
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The last term is a stopped martingale, so summing over i �= j and taking expec-
tation we get the following bound,∣∣∣∣∣E

η

R

(
N∑

i=1

∑
j �=i

�
(
Y ε,i

t∧τε
− Y ε, j

t∧τε

))∣∣∣∣∣ ≤
N∑

i=1

∑
j �=i

∣∣Eη

R

(
�(Y ε,i

0 − Y ε, j
0

)∣∣

+ C
N∑

i=1

∑
j �=i

∑
k �=i, j

Eη

R

[∫ t∧τε

0

ds∣∣Y ε,i
s − Y ε, j

s

∣∣∣∣Y ε,i
s − Y k,ε

s

∣∣
]

using also the fact that |Kε(x)| ≤ C ′ 1
|x | for some C ′ > 0.

Now, there is a constant C(R, η) > 0 such that for i �= j ,

∣∣Eη

R

(
�

(
Y ε,i

0 − Y ε, j
0

)∣∣ =
∣∣∣∣∣
∫
Bη

R

ln(|xi − x j |2)�η

R(dx)

∣∣∣∣∣ ≤ C(R, η).

On the other hand, observe that for different indexes i, j, k, by conditioning on G0

we have

Eη

R

[ ∫ t∧τε

0

ds∣∣Y ε,i
s − Y ε, j

s

∣∣∣∣Y ε,i
s − Y k,ε

s

∣∣
]

≤ Eη

R

[ ∫ t

0

ds∣∣Y ε,i
s − Y ε, j

s

∣∣∣∣Y ε,i
s − Y k,ε

s

∣∣
]

= 1

Vol
(
Bη

R

) E

∫ t

0

[ ∫
Bη

R

dx∣∣ξε,i
s (x) − ξ

ε, j
s (x)

∣∣∣∣ξε,i
s (x) − ξ

k,ε
s (x)

∣∣
]

ds

= 1

Vol
(
Bη

R

) E

∫ t

0

[ ∫
ξε

s (Bη

R )

dx

|xi − x j ||xi − xk |
]

ds.

The last identity is due to the fact that P-a.s., the map x �→ ξε
s (x) is Lebesgue-

measure preserving (cf. Lemma 3.1). Since Bη

R ⊆ BR , we know from Corollary
2.1 that P-a.s., for all s ∈ [0, t]

ξε
s

(
Bη

R

) ⊆ BR+Fs ({1,...,N }) ⊆ BR+Ft ({1,...,N }).
This and Lemma 3.2 imply that

Eη

R

[ ∫ t∧τε

0

ds∣∣Y ε,i
s − Y ε, j

s

∣∣∣∣Y ε,i
s − Y k,ε

s

∣∣
]

≤ Ct E

[ ∫
BR+Ft ({1,...,N })

dx

|xi − x j ||xi − xk |
]

≤ Ct E((R + Ft ({1, . . . , N })4)

< ∞,

which together with the previous estimates yields (21).
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Next, if i∗, j∗ denote the random indexes where the inf defining τε is attained,
we have

Eη

R

(
N∑

i=1

∑
j �=i

�
(
Y ε,i

t∧τε
− Y ε, j

t∧τε

))

= 2 ln εPη

R(τε ≤ t) + Eη

R

(∑
i �=i∗

∑
j �=i, j∗

�
(
Y ε,i

τε
− Y ε, j

τε

)
1{τε≤t}

)

+ Eη

R

(
N∑

i=1

∑
j �=i

�
(
Y ε,i

t − Y ε, j
t

)
1{τε>t}

)
. (22)

On the other hand, from Corollary 2.1, Pη

R-a.s. we have, for all i �= j ,

�
(
Y ε,i

τε
− Y ε, j

τε

)
1{τε≤t} ≤ 2 ln(2R + 2Fτε

)1{τε≤t} ≤ 2 ln+(2R + 2Ft )

where ln+(x) = (ln(x) ∨ 0). Similarly,

�
(
Y ε,i

t − Y ε, j
t

)
1{τε>t} ≤ 2 ln+(2R + 2Ft )

From this estimates, (21) and (22), we deduce that for all ε > 0,

2 ln εPη

R(τε ≤ t) ≥ −C(R, η, t, N ) − 4(N 2 − N )E(ln+(2R + 2Ft )) > −∞
We conclude that limε→0 Pη

R(τε ≤ t) = 0, from where (20) follows.
Since this is true for all t > 0, we deduce that

lim
ε→0

τε = +∞, Pη

R − a.s.

or equivalently
∫
Bη

R

P
[

lim
ε→0

(
inf{s > 0 : ∃i �= j s.t.

∣∣ξε,i
s (x) − ξε, j

s (x)
∣∣ ≤ ε}) < ∞]

�
η

R(dx) = 0.

Consequently, η and R > 0 being arbitrary, we deduce that

P
[

lim
ε→0

(
inf{s > 0 : ∃i �= j s.t.

∣∣ξε,i
s (x) − ξε, j

s (x)
∣∣ ≤ ε}) < ∞] = 0, dx − a.s.

Integrating over R
2N with respect to (

∏N
i=1 p0(xi ))dx we conclude that

P

[
lim
ε→0

(
inf{s > 0: ∃i �= j s.t.

∣∣X ε,i
s − X ε, j

s

∣∣ ≤ ε}) < ∞
]

= 0,

that is, (19) holds.
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We conclude that the following process is P-a.s. well defined for all t > 0:

Xt = X ε
t for all ε > 0 such that t ≤ Tε.

By the Lipschitz property of Kε for all ε > 0, and since Tε → +∞ when ε → 0,
it is simple to check that X is the unique path-wise solution of (1).

4. SOME FINAL COMMENTS

There are several aspects in which the previous arguments are not satisfactory,
or could be improved. First, for the “clustering” argument we only used the decay
of the interaction, and not the specific “rotational” form of it. Indeed, the drift
induced by a particle, say X j on a particle Xi is orthogonal to their relative
positions (see Ref. 7 for details) and this should be taken into account. It is also
likely that some of the “clustering occurrence” events studied in Sec. 2 have
small probabilities. Since we need to compute expectations, this could somehow
compensate our badly behaved “L∞”-estimates, but needs a much more careful
analysis.

On the other hand, it comes clear from the proof of Lemma 2.2 that roughly,
due to assumption (H), whenever some particle in one cluster moves far away
from its initial position, then some other particle must have moved away from the
first. If (H) is violated by some subsystem, then one particle moving away from its
initial position only forces some other particle to move away from its own initial
position. Thus, nothing prevents such two particles from staying closed to each
other. This poses problems when trying to define clusters, and could in principle
allow for collisions between the two particles. Nevertheless, in a (very) simple
situation, assumption (H) can be removed easily:

Lemma 4.1. If N = 2, a1 = −a2 = a and Xi
0, i = 1, 2 have a densities with

respect to Lebesgue measure and are independent of the (independent) Brownian
motions B1, B2, then there is pathwise existence and uniqueness for (1).

Proof: We are looking for a solution of

X1
t = X1

0 +
√

2νB1
t − a

∫ t

0
K

(
X1

s − X2
s

)
ds,

X2
t = X2

0 +
√

2νB2
t + a

∫ t

0
K

(
X2

s − X1
s

)
ds

(23)

with the Xi
0’s independent of the Bi ’s. Consider the Brownian motion

Yt := X1
0 − X2

0 +
√

2ν
(
B1

t − B2
t

)
.
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Then, almost surely we have Yt �= 0 for all t ≥ 0. We can then define

X1
t = X1

0 +
√

2νB1
t − a

∫ t

0
K (Ys) ds,

X2
t = X2

0 +
√

2νB2
t + a

∫ t

0
K (−Ys) ds,

and observe that since K is odd, we get X1
t − X2

t = Yt . Thus, we have a solution
of (23). It is similarly seen that this is the unique solution. �

The previous lemma suggests that a cluster I of two particles that do not satisfy
(H) will not experience collisions if it is far away enough from other particles
(this of course needs a proof). At least three particles should then be involved in
order to produce a (maybe two-particles) collision. A better understanding of the
general case could be gained from a rigorous analysis of a three particle system
not satisfying (H). We shall not pursue that problem here.
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Methods in Math. Phys., K. Itô and N. Ikeda (eds.), pp. 303–334 (Tokyo, Kinokuniya (1987).



Paths Clustering and an Existence Result for Stochastic Vortex Systems 719

11. H. Osada, Diffusion processes with generators of generalized divergence form. J. Math. Kyoto
Univ. 27:597–619 (1987).

12. H. Osada, A stochastic differential equation arising from the vortex problem. Proc. Japan Acad.
Ser. A Math. Sci. 61(10):333–336 (1985).

13. L. C. G. Rogers and Z. Shi, Interacting Brownian particles and the Wigner law. Probab. Theory
Related Fields 95:555–570 (1993).

14. S. Takanobu, On the existence and uniqueness of SDE describing an n-particle system interacting
via a singular potential. Proc. Japan Acad. Ser. A Math. Sci. 61:287–290 (1985).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


